The binary to decimal to hexadecimal converter is an essential tool in digital electronics and computer science that enables seamless conversion between different number systems.
Binary numbers, consisting only of 0s and 1s, are the foundation of computer operations. The decimal system is our everyday counting method, while hexadecimal provides a more compact way to represent binary values using digits 0-9 and letters A-F.
Binary To Decimal To Hexadecimal Converter
Binary | Decimal | Hexadecimal | Process Description |
---|---|---|---|
10101100 | 172 | AC | Groups of four, direct convert |
11110000 | 240 | F0 | Power of two method |
00111010 | 58 | 3A | Division by sixteen method |
11000101 | 197 | C5 | Combined conversion |
01011111 | 95 | 5F | Direct lookup method |
Binary to Decimal to Hexadecimal Conversion Formula
Binary to Decimal:
To convert binary to decimal, multiply each digit by 2 raised to its position power (from right to left, starting at 0) and sum the results.
Formula: Decimal = Σ(bit × 2^position)
Example: Converting binary 1101
- 1 × 2^3 = 8
- 1 × 2^2 = 4
- 0 × 2^1 = 0
- 1 × 2^0 = 1
- Total = 13 decimal
Decimal to Hexadecimal:
To convert decimal to hexadecimal, repeatedly divide by 16 and track remainders in reverse order.
Example: Converting decimal 13 to hexadecimal
- 13 ÷ 16 = 0 remainder 13 (D)
- Result:
D
hexadecimal
How to Convert Binary to Decimal to Hexadecimal
Converting binary 11010110 to Decimal to Hexadecimal
Binary to Decimal:
- 1 × 2^7 + 1 × 2^6 + 0 × 2^5 + 1 × 2^4 + 0 × 2^3 + 1 × 2^2 + 1 × 2^1 + 0 × 2^0
- 128 + 64 + 0 + 16 + 0 + 4 + 2 + 0
- = 214 decimal
Decimal to Hexadecimal:
- 214 ÷ 16 = 13 remainder 6
- 13 ÷ 16 = 0 remainder 13 (D)
- Result:
D6
hexadecimal
- First Step: Convert binary to decimal
- Group binary digits
- Apply the position-weight formula
- Sum all values
- Second Step: Convert decimal to hexadecimal
- Divide by 16 repeatedly
- Convert remainders to hex digits
- Read results bottom-up
Binary to Decimal to Hexadecimal Chart
Binary | Decimal | Hexadecimal |
---|---|---|
0000 | 0 | 0 |
0001 | 1 | 1 |
0010 | 2 | 2 |
0011 | 3 | 3 |
0100 | 4 | 4 |
0101 | 5 | 5 |
0110 | 6 | 6 |
0111 | 7 | 7 |
1000 | 8 | 8 |
1001 | 9 | 9 |
1010 | 10 | A |
1011 | 11 | B |
1100 | 12 | C |
1101 | 13 | D |
1110 | 14 | E |
1111 | 15 | F |
Converting Binary 111111110010 to Hexadecimal
- Group binary digits into sets of four: 1111 1111 0010
- Convert each group to decimal:
- 1111 = 15 (F)
- 1111 = 15 (F)
- 0010 = 2 (2)
- Combine hexadecimal digits:
- Result: FF2
References:
- IEEE Computer Society Digital Library: https://www.computer.org/education/standards
Related Conversion Tools :