This **decimal to fraction calculator** is a **powerful** tool that change decimal numbers into fractions using **Fraction = Decimal * (10^n) / (10^n)** formula.

This **handy** calculator **simplifies** the process of changing decimals to fractions, which can be **extremely** useful in various **mathematical** and **real-world** applications.

## Decimal to Fraction Calculator

Decimal | Fraction | Simplified Fraction |
---|---|---|

0.5 | 5/10 | 1/2 |

0.75 | 75/100 | 3/4 |

0.25 | 25/100 | 1/4 |

0.125 | 125/1000 | 1/8 |

0.333… | 333/999 | 1/3 |

0.1 | 1/10 | 1/10 |

0.2 | 2/10 | 1/5 |

0.333 | 333/1000 | 1/3 |

0.875 | 875/1000 | 7/8 |

0.666… | 666/999 | 2/3 |

0.4 | 4/10 | 2/5 |

0.625 | 625/1000 | 5/8 |

0.9 | 9/10 | 9/10 |

0.05 | 5/100 | 1/20 |

0.875 | 875/1000 | 7/8 |

## Decimal to Fraction Conversion Formula

The **basic** formula for converting a decimal to fraction is:

**Fraction = Decimal * (10^n) / (10^n)**

Where

Decimalis the decimal number you want to convert.

nis the number of decimal places in the decimal.

Converting

0.5to a fraction

0.510/10 = 5/10, which.simplifiesto *1/2

Converting

0.125to a fraction

0.1251000/1000 = 125/1000, which.simplifiesto *1/8

## How to Convert Decimals to Fractions?

**To change decimals to fractions:**

**Multiply**the decimal by**10^n**, where**n**is the number of decimal places.**Write**this as the**numerator**of the fraction.**Use****10^n**as the**denominator**.**Simplify**the fraction if possible.

For **repeating decimals**, the process is slightly different and involves **algebraic manipulation**.

## What is in Fraction Form?

“In fraction form” refers to expressing a number as a **ratio** of two integers. This representation consists of a **numerator** (top number) and a **denominator** (bottom number), separated by a line or slash.

**Examples**:

**1/2**(one-half)**3/4**(three-quarters)**5/8**(five-eighths)

Fractions can represent **parts** of a whole, **ratios**, or **division operations**.

## What is 0.8333 as a Fraction?

To convert **0.8333** to a fraction:

- Recognize it as a
**repeating decimal**(0.8333333…) - Let
**x = 0.8333333…** **10x = 8.333333…****10x – x = 8.333333… – 0.833333…****9x = 7.5****x = 7.5/9 = 5/6**

Therefore, **0.8333** (as a repeating decimal) is **equivalent** to the fraction **5/6**.

## How to Convert a Repeating Decimal to a Fraction?

Converting a **repeating decimal** to a fraction involves these **steps**:

**Let**x equal the repeating decimal.**Multiply**both sides by a power of**10**that shifts the decimal point past the repeating part.**Subtract**the original equation from the new equation.**Solve**for x.**Simplify**the resulting fraction if possible.

This method **eliminates** the repeating part and allows you to **solve** for the fraction.

**Related Tools:**