Use our online **volume of cuboid calculator** to calculate the **volume** of a **cuboid**, also known as a **rectangular prism** or **rectangular box**.

This **three-dimensional shape** has six **rectangular faces**, with each pair of opposite faces being **identical**. The calculator takes the measurements of the cuboid’s **length**, **width**, and **height** as inputs and calculates its **volume**.

The **volume** of an object is the amount of **three-dimensional space** it occupies. For **a cuboid**, this represents the **amount of space** or **material** contained within its boundaries.

- A
**moving box**measures**2 feet**in length,**1.5 feet**in width, and**2 feet**in height. The calculator would determine its volume as**6 cubic feet**. - A
**storage container**has dimensions of**10 meters**long,**2.5 meters**wide, and**3 meters**high. The calculator would compute its volume as**75 cubic meters**. - A
**small jewelry box**measures**5 inches**in length,**3 inches**in width, and**2 inches**in height. The calculator would calculate its volume as**30 cubic inches**.

## Volume Of Cuboid Calculator

Length | Width | Height | Volume | Conversion Equation | Converted Volume |
---|---|---|---|---|---|

5 ft | 4 ft | 3 ft | 60 ft³ | 1 ft³ = 0.0283168 m³ | 1.699 m³ |

2 m | 1.5 m | 1.8 m | 5.4 m³ | 1 m³ = 1000 L | 5,400 L |

10 cm | 8 cm | 6 cm | 480 cm³ | 1 cm³ = 1 mL | 480 mL |

3 yd | 2 yd | 2.5 yd | 15 yd³ | 1 yd³ = 0.764555 m³ | 11.468 m³ |

20 in | 15 in | 12 in | 3600 in³ | 1 in³ = 16.3871 cm³ | 58,993.56 cm³ |

# How do you calculate the volume of a cuboid?

To calculate the **volume** of a cuboid, follow these steps:

**Measure the dimensions**: Determine the**length**,**width**, and**height**of the cuboid using a**consistent unit of measurement**.**Apply the formula**: Multiply the three dimensions together using the formula**V = l × w × h**.**Verify the units**: Ensure that the result is expressed in**cubic units**(e.g.,**cubic centimeters**,**cubic feet**,**cubic meters**).**Round if necessary**: Depending on the**precision required**, round the result to an**appropriate number of decimal places**.

**Example calculation**: Let’s calculate the **volume** of a cuboid with **length 7.5 meters**, **width 3.2 meters**, and **height 2.8 meters**.

- Dimensions: l =
**7.5 m**, w =**3.2 m**, h =**2.8 m** - V =
**7.5 m × 3.2 m × 2.8 m** - V =
**67.2 cubic meters (m³)**

In this case, the **volume** is already expressed in **cubic meters**, so no unit conversion is necessary.

Related Tools

# Volume Of Cuboid Formula

The **formula for the volume of a cuboid** is easy:

**V = l × w × h**

Where:

**V**represents the**volume**.**l**stands for**length**.**w**denotes**width**.**h**indicates**height**.

This formula calculates the **space occupied** by the cuboid by multiplying its three dimensions. It’s important to ensure that all measurements are in the **same unit** before applying the formula.

**Examples**:

- A cuboid with
**length 5 cm**,**width 3 cm**, and**height 4 cm**: V = 5 cm × 3 cm × 4 cm =**60 cubic centimeters (cm³)** - A room measuring
**15 feet**long,**12 feet**wide, and**8 feet**high: V = 15 ft × 12 ft × 8 ft =**1,440 cubic feet (ft³)** - A
**shipping container**with**length 6 m**,**width 2.4 m**, and**height 2.6 m**: V = 6 m × 2.4 m × 2.6 m =**37.44 cubic meters (m³)**

# How to calculate area of cuboid?

The **surface area** is the **total area** of all six faces of the cuboid. Here’s how to calculate it:

**Calculate the area of each face**: There are three pairs of**identical rectangular faces**.**Front/Back face area**: length × height**Left/Right face area**: width × height**Top/Bottom face area**: length × width

**Sum up the areas**: Add the areas of all**six faces**.

The formula for the **surface area** of a cuboid is:

**SA = 2(lw + lh + wh)**

Where:

**SA**is the**surface area**.**l**is**length**.**w**is**width**.**h**is**height**.

**Example calculation**: Let’s calculate the **surface area** of a cuboid with **length 5 m**, **width 3 m**, and **height 2 m**.

**Front/Back face area**: 5 m × 2 m =**10 m²**(× 2 faces =**20 m²**)**Left/Right face area**: 3 m × 2 m =**6 m²**(× 2 faces =**12 m²**)**Top/Bottom face area**: 5 m × 3 m =**15 m²**(× 2 faces =**30 m²**)

**Total surface area** = **20 m² + 12 m² + 30 m² = 62 m²**

Alternatively, using the formula: SA = 2(5 × 3 + 5 × 2 + 3 × 2) = 2(15 + 10 + 6) = 2(31) = **62 m²**.